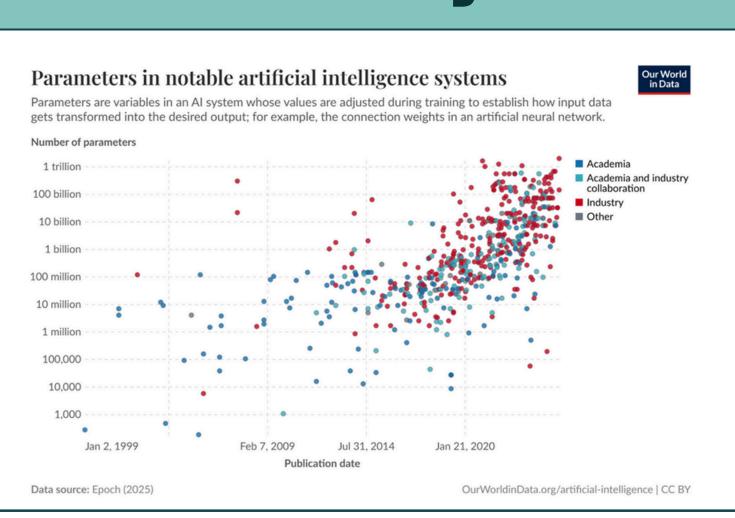


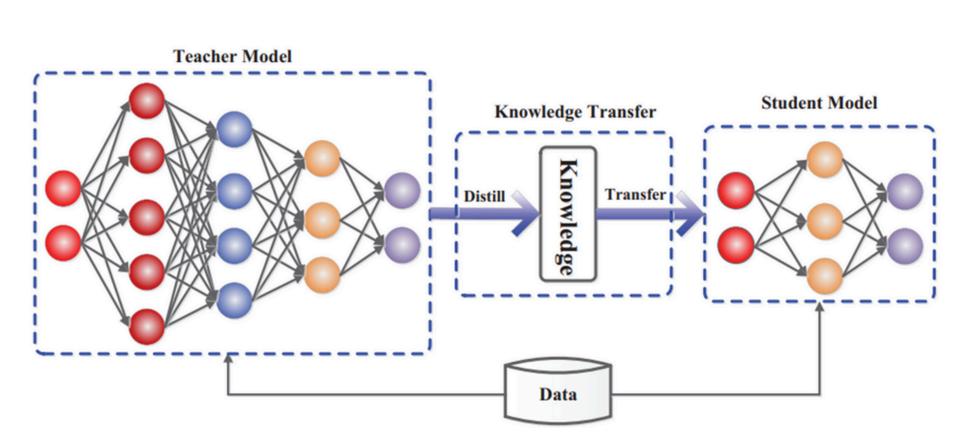
Suhas Kamasetty Ramesh*, Ayan Sengupta*, Tanmoy Chakraborty

Indian Institute of Technology Delhi, Laboratory for Computational Social Systems (LCS2)

Knowledge Distillation and Its Importance

- Rapid advancement of pre-trained language models(LMs) has led to the development of large-scale language models that achieve state-of-the-art performance across various NLP tasks.
- Deploying these large models presents significant challenges due to their high computational & memory requirements





- Knowledge Distillation is a model compression technique that aims to transfer knowledge from a large model(teacher model) to a smaller model(student model)
- Broadly, the goal is to train a small student network to match the predictions made by the larger teacher network

Analytical Understanding of KD

- Despite the recent traction of KD research, its effectiveness for smaller language models (LMs) and the mechanisms driving knowledge transfer remain underexplored.
- Existing studies overlook explainability of KD
- We present the first large-scale empirical and statistical analysis of KD across models ranging from 0.5B to 14B

Models:

Qwen 2.5 Llama 3 Models sizes: 0.5B to 14B

21 Teacher Student pairs

Rev-KD

Seq-KD

Current KD methods for LLMs

GKD

KD Methods:

Benchmarks:

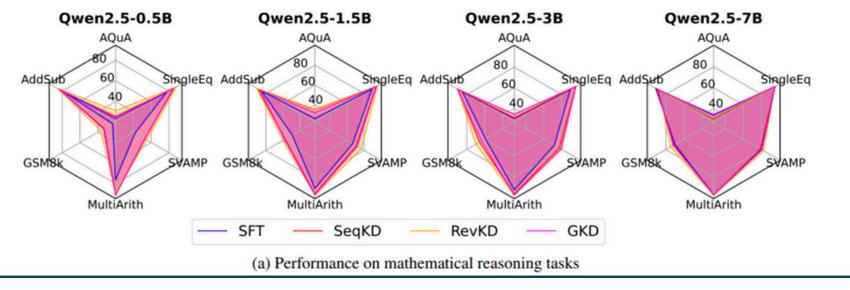
Mathematical Reasoning

Instruction Following

Commonsense Reasoning

Effectiveness of KD

- KD consistently outperforms SFT in all three benchmarks
- KD significantly improves model generalization
- Zero-shot performance of smaller LMs (<1B size) can be improved by up to 10% with peak task gains reaching 22% post distillation
- A one-way ANOVA test reveals no significant difference on math and commonsense reasoning benchmarks - suggesting that all KD methods perform similarly on these two benchmarks



Results

Does KD depend on student model size?

- We find a negative correlation (-0.66, p-value=0.0) between KD improvement and student size, indicating diminishing returns as model size increases.
- While smaller models (< 1B) improved by upto 10%, larger (7B) models exhibit only ~1.3% improvement after distillation, indicating that KD is most effective for smaller LMs.

 Test Type
 AQuA
 AddSub
 GSM8k
 MultiArith
 SVAMP
 SingleEq
 Average

 Spearman rank
 -0.23 (0.2)
 -0.64 (0.0)
 -0.51 (0.0)
 -0.83 (0.0)
 -0.43 (0.0)
 -0.59 (0.0)
 -0.66 (0.0)

 Test Type
 ARC-c
 ARC-e
 BoolQ
 Hellaswag
 OBQA
 PiQA
 SiQA
 Winogrande
 Average

 Spearman rank
 -0.63 (0.0)
 -0.78 (0.0)
 -0.15 (0.4)
 -0.4 (0.0)
 -0.55 (0.0)
 -0.67 (0.0)
 -0.49 (0.0)
 -0.34 (0.0)
 -0.54 (0.0)

Table 3: Spearman rank correlation and p-value between student performance and student model size.

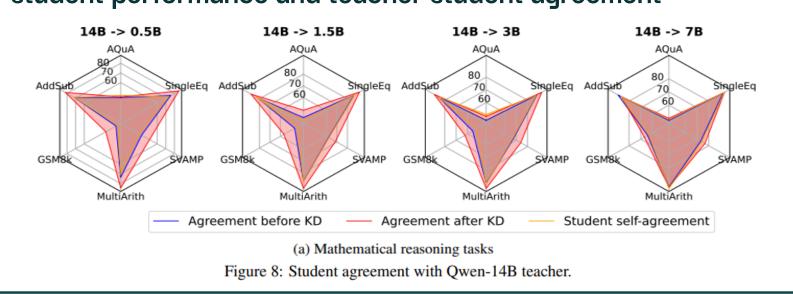
Does KD depend on teacher performance?

- We conducted Spearman rank correlation between student improvement after KD and teacher performance.
- In most tasks, correlations are generally weak or negative, indicating that teacher quality alone does not dictate KD success.
- But, a task-unaware teacher can significantly degrade student performance.
- Post-distillation performance of student model can drop up to 40%, if teacher is not fine-tuned on downstream domain.

(a) Mathematical reasoning

Teacher Student Agreement

- KD significantly improves teacher-student agreement • Smaller models (0.5B & 1.5B) exhibit higher agreement with larger Qwen-14B model in structured mathematical tasks like AddSub (89.1%) and MultiArith (94.5%), indicating effective transfer of well-defined rules.
- However, a statistical test shows no significant corelation between student performance and teacher student agreement

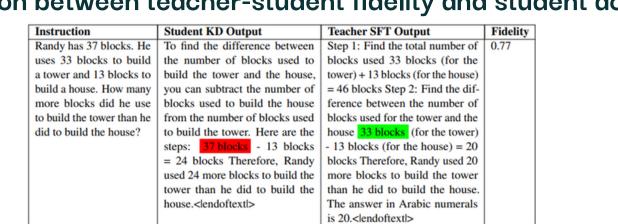


New metrics: Agreement & Fidelity

- Apart from performance analysis of student model, we propose two metrics to understand alignment between teacher and student
- Teacher-Student Agreement quantifies how often student replicates the teacher's outputs and is measured using top-1 agreement (fraction of matching predictions). (this metric only relies on the final answer and does not measure the quality of the intermediate reasoning steps)
- Reasoning Fidelity captures how well the student mirrors the teacher's reasoning process rather than just final predictions. We use BLEU score between teacher and student reasoning outputs to compute fidelity

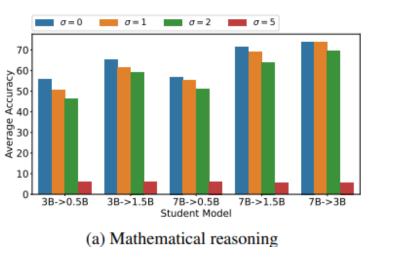
Reasoning Fidelity

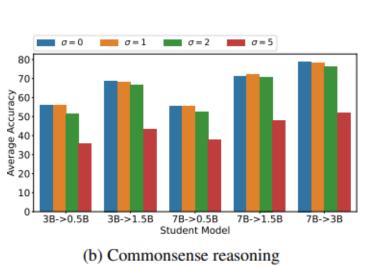
- Although KD improves Fidelity over SFT, there is a weak correlation between fidelity and student performance, implying that strict imitation does not necessarily enhance performance
- The mismatch between student accuracy and poor fidelity suggests that while KD improves performance, it may fail to preserve the teacher's structured decision-making process, raising concerns about interpretability and reliability in critical applications.
- Error analysis on SVAMP test-set further highlights the feeble connection between teacher-student fidelity and student accuracy.



Noisy teacher signals

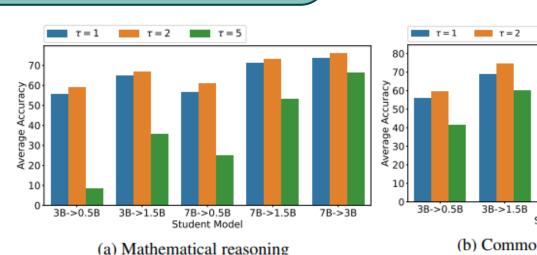
- We investigate the significance of teacher signals by injecting Gaussian noise(€ σ)) into teacher logits before distillation
- Increasing **o** from 0 (no noise) to 1 and 2
- slightly reduces performance. • At σ = 5, performance collapses

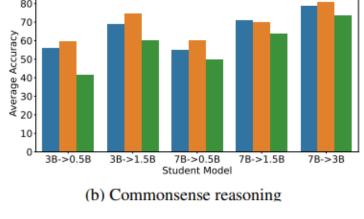




Impact of temperature

- Temperature (T) significantly impacts KD effectiveness.
- A moderate **T** = 2 consistently yields the best results in most tasks.
- However, **T** = 5 leads to severe performance drops, especially for smaller students.





Conclusion

- KD significantly benefits smaller models and its effectiveness diminishes with increasing model size
- Teacher domain adaptation plays a more critical role than teacher performance
- Surprisingly, higher teacher-student agreement did not always correlate with better student performance
- Results underscore the need for task-aware KD strategies and adaptive distillation techniques tailored to student learning dynamics.
- Future research should explore alternative KD objectives, self-distillation mechanisms, and refined teacherstudent alignment strategies to improve both performance and reasoning fidelity.

